
Formal Verification of MasterChef V2

Summary
This document describes the specification and verification of MasterChefV2 from SushiSwap
using Certora Prover. The work was undertaken from March 15 - 30 March, 2021. The latest
commit that was reviewed and run through the Certora Prover was
414f55587c25b4a761f402d29995aded08806da2.

The scope of our verification was the MasterChefV2 contract, which rewards users with Sushi
tokens for depositing their liquidity pool tokens.

The Certora Prover proved that the implementation of the MasterChefV2 is correct with respect
to the formal rules written by the SushiSwap and the Certora teams. The next section formally
defines high level specifications.

All the rules are publically available in a public github:
https://github.com/sushiswap/sushiswap/tree/master/spec

Certora Prover verification results:
MasterChefV2 rules
Additional rule (depositThenWithdraw) on simplified version

www.certora.com

https://github.com/sushiswap/sushiswap/tree/master/spec
https://vaas-stg.certora.com/output/98097/62036d736fc82adee0de/?anonymousKey=707bc28f78716ca49e21c37b998f2ece9237493f
https://vaas-stg.certora.com/output/98097/dae7846ec701c26a71f1/?anonymousKey=b93a6af989f37e9a2acae07e373e65fd2355fa2a


Disclaimer
The Certora Prover takes as input a contract and a specification and formally proves that the
contract satisfies the specification in all scenarios. Importantly, the guarantees of the Certora
Prover are scoped to the provided specification, and any cases not covered by the specification
are not checked by the Certora Prover.

We hope that this information is useful, but provides no warranty of any kind, expressed or
implied. The contents of this report should not be construed as a complete guarantee that the
contract is secure in all dimensions. In no event shall Certora or any of its employees be liable
for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

Notations
1. ✔ indicates the rule is formally verified on the latest commit.
2. ✔* indicates that the rule is verified on a simplified version.
3. We use Hoare triples of the form {p} C {q}, which means that if the execution of program

C starts in any state satisfying p, it will end in a state satisfying q. In Solidity, p is similar
to require, and q is similar to assert.

4. The syntax {p} (C1 ～ C2) {q} is a generalization of Hoare rules, called relational
properties. {p} is a requirement on the states before C1 and C2, and {q} describes the
states after their executions. Notice that C1 and C2 result in different states. As a special
case, C1～op C2, where op is a getter, indicating that C1 and C2 result in states with the
same value for op.

www.certora.com

https://en.wikipedia.org/wiki/Hoare_logic
http://software.imdea.org/~gbarthe/__introrelver.pdf
http://software.imdea.org/~gbarthe/__introrelver.pdf


Verification of MasterChefV2
MasterChefV2 allows users to deposit liquidity pool tokens and receive rewards in Sushi. A total
of 100 Sushi per block is distributed to all active pools according to allocPoint. allocPoint is set
for each liquidity pool representing the amount of reward for the pool out of the sum of all
allocation points. In addition, for each pool, accSushiPerShare represents the accumulated
sushi per share for a lpToken since the pool was added and up to the latest updated block
(lastRewardBlock).

Each user receives a reward that is proportional to the amount of tokens deposited and the
duration it was deposited. At any point users can withdraw their assets: liquidity tokens or Sushi
tokens. MasterChefV2 is managed by an owner.

Assumptions
The following behavior of the owner is assumed:

1. Owner is responsible for not adding duplicate lpTokens, either by adding or migrating.
2. There is always at least one pool with allocPoint greater than zero.
3. Whenever adding a pool or setting a new allocPoint to an existing pool,

accSushiPerShare and lastRewardBlock are updated for all currently active pools.
4. SUSHI token is not added as an lpToken.

Data Structures
1. lpToken

An array that stores the LP tokens corresponding to a pool.

2. rewarder
An array that contains the rewarder corresponding to a pool.

3. poolInfo
An array of structures that contain information about pools. The PoolInfo structure has
three main components:

a. accSushiPerShare: Represents the accumulated sushi per share for a lpToken
since the pool was added and up to the latest updated block (lastRewardBlock).

b. lastRewardBlock: The last block number when the reward was given out.
c. allocPoint: Representing the amount of reward for the pool out of the sum of all

allocation points.

www.certora.com



4. userInfo
Given a pool ID and an user’s address, userInfo returns a structure that stores the
information about the corresponding user. The UserInfo structure has two main
components:

a. amount: LP token amount the user has provided.
b. rewardDebt: The amount of SUSHI reward not entitled to the user, either

because of joining after the start of the poll, already harvested reward, or
withdrawal of LP tokens.

Functions
1. deposit(uint256 pid, uint256 amount, address to) : N/A

Allows a user to deposit LP tokens to a specific pool for SUSHI allocation.

2. withdraw(uint256 pid, uint256 amount, address to) : N/A
Allows a user to withdraw LP tokens from a specific pool.

3. harvest(uint256 pid, address to) : bool
Harvests the SUSHI profit that has been collected for msg.sender and transfers it to the
“to” user.

4. pendingSushi(uint256 pid, address user) : uint256
Calculates the SUSHI reward at the current state for a specific user.

www.certora.com



Properties
1. Valid states

A set of invariants that define the valid state of the contract at any given point.

a. Integrity of internal data structures’ length✔ (rule: IntegrityOfLength)

poolInfo.length = lpToken.length = rewarder.length

b. Validity of LP tokens✔ (rule: validityOfLpToken)

userInfo(pid)(u).amount > 0 ⇒ lpToken(pid) ≠ 0

c. Integrity of total allocation points✔ (rule: integrityOfTotalAllocPoint)

totalAllocPoint = ∑pid poolInfo(pid).allocPoint

d. Monotonicity of accSushiPerShare✔ (rule:
monotonicityOfAccSushiPerShare)

{ b = poolInfo(pid).accSushiPerShare }

op

{ poolInfo(pid).accSushiPerShare ≥ b }

e. Monotonicity of lastRewardBlock✔ (rule: monotonicityOfLastRewardBlock)

{ b = poolInfo(pid).lastRewardBlock }

op

{ poolInfo(pid).lastRewardBlock ≥ b }

2. No change to other’s assets
a. No change to other’s amount✔ (rule: noChangeToOtherUsersAmount)

User u does not change the balance of user a. User u may increase the balance
of user a if they are depositing to user a.

{ a ≠ u ⋀ balance = userInfo(pid)(a).amount }

op_u

{ userInfo(pid)(a).amount = balance ⋁ (userInfo(pid)(a).amount ≥
balance ⋀ op_u = deposit(pid, x, a)) }

where op_u is any operation performed by u

www.certora.com



b. No change to other’s reward debt✔ (rule:
noChangeToOtherUsersRewardDebt)

User u does not change the reward debt of user a. User u may increase the
reward debt of user a if they are depositing to user a.

{ a ≠ u ⋀ reward = userInfo(pid)(a).rewardDebt }

op_u

{ userInfo(pid)(a).rewardDebt = reward ⋁

(userInfo(pid)(a).rewardDebt ≥ reward ⋀

op_u = deposit(pid, x, a)) }

where op_u is any operation performed by u

3. Operation on one pool has no effect on another pool✔ (rule:
noChangeToOtherPool)

{ pid ≠ otherPid ⋀

a = poolInfo(otherPid).accSushiPerShare ⋀

b = poolInfo(otherPid).lastRewardBlock ⋀

c = poolInfo(otherPid).allocPoint }

op_pid

{ poolInfo(otherPid).accSushiPerShare = a ⋀

poolInfo(otherPid).lastRewardBlock = b ⋀

poolInfo(otherPid).allocPoint = c }

where op_pid is any operation on pid except massUpdatePools

4. Preserve total assets of user✔ (rule: preserveTotalAssetOfUser)
Assuming SUSHI is not an lpToken and user u only deposits, withdraws, or emergency
withdraws from and to themselves. If so, user u’s total balance is preserved. User u is
also not the MasterChefV2 contract itself.

{ totalBalance = lpToken(pid).balanceOf(u) + userInfo(pid)(u).amount }

op

{ lpToken(pid).balanceOf(u) + userInfo(pid)(u).amount = totalBalance }

where op is any operation

www.certora.com



5. Solvency of the system
The total asset of the system is the sum of the users’ amounts.

lpToken(pid).balanceOf(MasterChefV2) = ∑u in userlpToken(pid).balanceOf(u)

Proven by showing that:

a. Each operation changes at most one user’s amount✔ (rule:
changeToAtmostOneUserAmount)

b. System balance change is coherent with a user’s amount changes✔ (rule:
solvency)

6. Correct computation
a. pendingSushi returns the amount that will be given in harvest✔ (rule:

sushiGivenInHarvestEqualsPendingSushi)
{ x = sushi.balanceOf(u) ⋀ pending = pendingSushi(pid,user) }

harvest(pid,user)
{ sush.balanceOf(u) = x + pending } (on the same block)

7. Inverse operation: deposit + withdraw✔* (rule: depositThenWithdraw)
Assuming that the user u only deposits and withdraws from and to themselves.

{ b = userInfo(pid)(u).amount ⋀ r = userInfo(pid)(u).rewardDebt }

deposit(pid, amount, to)

withdraw(pid, amount, to)

{ userInfo(pid)(u).amount = b ⋀ userInfo(pid)(u).rewardDebt = r }

8. Additivity
a. Deposit is additive for user’s amount✔ (rule:

additivityOfDepositOnAmount)

Deposit of amount is additive, i.e., it doesn’t matter if some amount is deposited
in one larger transaction or in two smaller ones.

deposit(pid, x, to); deposit(pid, y, to)

~ deposit(pid, x + y, to)

www.certora.com



b. Withdraw is additive for user’s amount✔ (rule:
additivityOfWithdrawOnAmount)

Withdrawal of a user's amount is additive, i.e., it doesn’t matter if some amount is
withdrawn in one larger transaction or in two smaller ones.

withdraw(pid, x, to); withdraw(pid, y, to)

~ withdraw(pid, x + y, to)

www.certora.com


